402 research outputs found

    Secure Key Distribution by Swapping Quantum Entanglement

    Full text link
    We report two key distribution schemes achieved by swapping quantum entanglement. Using two Bell states, two bits of secret key can be shared between two distant parties that play symmetric and equal roles. We also address eavesdropping attacks against the schemes.Comment: 4 pages, 2 figures, 3 tables. The revised version will appear in Phys. Rev.

    Multi-photon entanglement from distant single photon sources on demand

    Full text link
    We describe a scheme that allows for the generation of any desired N-photon state on demand. Under ideal conditions, this requires only N single photon sources, laser pulses and linear optics elements. First, the sources should be initialised with the help of single-qubit rotations and repeat-until-success two-qubit quantum gates [Lim et al., Phys. Rev. Lett. 95, 030305 (2005)]. Afterwards, the state of the sources can be mapped onto the state of N newly generated photons whenever needed.Comment: 9 pages, 3 figure

    Secure Deterministic Communication Without Entanglement

    Full text link
    We propose a protocol for deterministic communication that does not make use of entanglement. It exploits nonorthogonal states in a two-way quantum channel attaining significant improvement of security and efficiency over already known cryptographic protocols. The presented scheme, being deterministic, can be devoted to direct communication as well as to key distribution, and its experimental realization is feasible with present day technology.Comment: 4 pages, 2 figures. Corrected typos in the field "Authors"; added one referenc

    Double jumps and transition rates for two dipole-interacting atoms

    Full text link
    Cooperative effects in the fluorescence of two dipole-interacting atoms, with macroscopic quantum jumps (light and dark periods), are investigated. The transition rates between different intensity periods are calculated in closed form and are used to determine the rates of double jumps between periods of double intensity and dark periods, the mean duration of the three intensity periods and the mean rate of their occurrence. We predict, to our knowledge for the first time, cooperative effects for double jumps, for atomic distances from one and to ten wave lengths of the strong transition. The double jump rate, as a function of the atomic distance, can show oscillations of up to 30% at distances of about a wave length, and oscillations are still noticeable at a distance of ten wave lengths. The cooperative effects of the quantities and their characteristic behavior turn out to be strongly dependent on the laser detuning.Comment: Substantially revised versio

    State Measurements with Short Laser Pulses and Lower-Efficiency Photon Detectors

    Full text link
    It has been proposed by Cook (Phys. Scr. T 21, 49 (1988)) to use a short probe laser pulse for state measurements of two-level systems. In previous work we have investigated to what extent this proposal fulfills the projection postulate if ideal photon detectors are considered. For detectors with overall efficiency less than 1 complications arise for single systems, and for this case we present a simple criterion for a laser pulse to act as a state measurement and to cause an almost complete state reduction.Comment: 13 pages, LaTeX; submitted to J. mod. Op

    A rate equation approach to cavity mediated laser cooling

    Get PDF
    The cooling rate for cavity mediated laser cooling scales as the Lamb-Dicke parameter eta squared. A proper analysis of the cooling process hence needs to take terms up to eta^2 in the system dynamics into account. In this paper, we present such an analysis for a standard scenario of cavity mediated laser cooling with eta << 1. Our results confirm that there are many similarities between ordinary and cavity mediated laser cooling. However, for a weakly confined particle inside a strongly coupled cavity, which is the most interesting case for the cooling of molecules, numerical results indicate that even more detailed calculations are needed to model the cooling process accurately.Comment: 15 pages, 10 figures, minor corrections, PRA (in press

    Randomized Dynamical Decoupling Techniques for Coherent Quantum Control

    Full text link
    The need for strategies able to accurately manipulate quantum dynamics is ubiquitous in quantum control and quantum information processing. We investigate two scenarios where randomized dynamical decoupling techniques become more advantageous with respect to standard deterministic methods in switching off unwanted dynamical evolution in a closed quantum system: when dealing with decoupling cycles which involve a large number of control actions and/or when seeking long-time quantum information storage. Highly effective hybrid decoupling schemes, which combine deterministic and stochastic features are discussed, as well as the benefits of sequentially implementing a concatenated method, applied at short times, followed by a hybrid protocol, employed at longer times. A quantum register consisting of a chain of spin-1/2 particles interacting via the Heisenberg interaction is used as a model for the analysis throughout.Comment: 7 pages, 2 figures. Replaced with final version. Invited talk delivered at the XXXVI Winter Colloquium on the Physics of Quantum Electronics, Snowbird, Jan 2006. To be published in J. Mod. Optic

    Enhanced Convergence and Robust Performance of Randomized Dynamical Decoupling

    Get PDF
    We demonstrate the advantages of randomization in coherent quantum dynamical control. For systems which are either time-varying or require decoupling cycles involving a large number of operations, we find that simple randomized protocols offer superior convergence and stability as compared to deterministic counterparts. In addition, we show how randomization always allows to outperform purely deterministic schemes at long times, including combinatorial and concatenated methods. General criteria for optimally interpolating between deterministic and stochastic design are proposed and illustrated in explicit decoupling scenarios relevant to quantum information storage.Comment: 4 pages, 3 figures, replaced with final versio

    Protecting subspaces by acting on the outside

    Full text link
    Many quantum control tasks aim at manipulating the state of a quantum mechanical system within a finite subspace of states. However, couplings to the outside are often inevitable. Here we discuss strategies which keep the system in the controlled subspace by applying strong interactions onto the outside. This is done by drawing analogies to simple toy models and to the quantum Zeno effect. Special attention is paid to the constructive use of dissipation in the protection of subspaces.Comment: 16 pages, 10 figure
    • …
    corecore